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Abstract

Brain functional network (BFN) has emerged as a practical path to explore bio-

markers for early mild cognitive impairment (eMCI). Currently, most of BFNs

only considered the topology structure between two brain regions and ignored

the high-order information among multiple brain regions. We proposed an

adaptive manifold regularization method to construct a new BFN. Firstly, a

traditional hypergraph was constructed through a low-order BFN. Then, an

adaptive hypergraph was obtained by updating the traditional hypergraph

weight and structure through adaptive hypergraph learning. An adaptive

hypergraph manifold regularization term was constructed by the Laplacian

matrix of the adaptive hypergraph. Finally, the low-order BFN was optimized

through the adaptive hypergraph manifold regularization and L1 sparse regu-

larization. The experimental results confirmed that the proposed method out-

performed other state-of-the-art methods in classification performance and

stability. This study revealed the causes of changes in topological properties

and provided a reference for the clinical diagnosis of eMCI.
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1 | INTRODUCTION

Alzheimer's disease (AD) is a neurodegenerative disorder
characterized by insidious onset and progressive develop-
ment, representing the most common cause of dementia.1

Studies have shown that the disease affects patients'
memory and communication abilities, potentially leading
to fatality.2 As of now, effective treatments for AD have
not been discovered, and the current study focuses on
identifying early intervention measures to slow down the
progression of the disease.3 Mild cognitive impairment
(MCI) serves as a transitional stage between AD and nor-
mal aging, with a conversion rate of 10%–15% developing
into AD every year.4 The brains of early mild cognitive

impairment (eMCI) patients have very subtle changes
compared with normal people.5 Timely detection and
treatment of eMCI are crucial to prevent its progression
to MCI and AD. However, the pathological mechanisms
of eMCI remain incompletely understood, making neuro-
imaging studies on patients essential for meaningful ther-
apeutic insights.

Currently, image acquisition and analysis methods
are in the developing stage, allowing researchers to easily
and noninvasively study brain function and structural
activity.6 Among them, abnormal changes are detected
by diffusion kurtosis imaging (DKI) in white matter,
fibers, and neurons.7 Information is acquired via arterial
spin labeling (ASL) in cerebral blood flow.8 Changes in
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blood oxygen concentration are measured through func-
tional magnetic resonance imaging (fMRI).9 In particular,
fMRI has higher temporal resolution and has become a
mainstream analytical method for detecting brain activ-
ity. For instance, Zhang et al.9 classified MCI using
improved feature extraction methods for fMRI data.
Sheng et al.10 predicted MCI patients' cognitive scores by
combining fMRI features. Overall, fMRI provides great
convenience for the early diagnosis of neurological
diseases.11

Numerous studies have indicated that brain func-
tional networks (BFNs) reflected the connectivity and
temporal correlations among brain regions, serving as a
powerful tool for detecting neurodegenerative dis-
eases.12,13 Researchers have proposed various methods
for constructing BFNs. For instance, Biswal et al.14 con-
structed a BFN by calculating the connectivity strength
between brain regions. Lee et al.15 adopted the sparse reg-
ularization method to construct a BFN with sparse repre-
sentation. Notably, BFNs typically involved complex
topological structures, and their construction process
required better preservation of prior information about
the brain.16 Prior information such as modularity was
retained by introducing different regularization terms.17

For example, Li et al.18 constructed a BFN with graph
manifold regularization, leveraging the premise that simi-
lar brain regions often exhibit similar structures. Ji
et al.19 adopted the hypergraph as a substitute for the
original graph, introducing hypergraph manifold regular-
ization term to construct a BFN. Xi et al.20 constructed a
BFN with dynamic hypergraph manifold regularization
to improve classification accuracy.

Most of the above methods only considered the rela-
tionship information between two brain regions, ignored
the high-order relationships among multiple brain
regions in BFNs, and could not retain more topological
structure information. Moreover, the hypergraphs they
constructed only focused on attributes from the data itself
and were unable to adapt to data changes and mine more
potential relationship information. The graph regulariza-
tion learning and the adaptive hypergraph learning were
adopted to solve these problems. On the one hand, the
graph regularization learning can preserve topological
structure information between brain regions and improve
generalization ability. The information contained the
connections between nodes, which better represent
the abnormal connections and changes of BFNs, improv-
ing performance and diagnostic accuracy. The generaliza-
tion ability was improved to prevent overfitting, allowing
the model to better generalize to previously unseen data.
On the other hand, the adaptive hypergraph can adap-
tively adjust the connection structure of the hypergraph
according to the characteristics of the data to better

capture the high-order relationships between data, com-
pared with traditional hypergraphs. It updates the weight
of the hypergraph and enhances the hypergraph struc-
ture through hypergraph ranking optimization and adap-
tive weight learning.

We captured high-order relationship information
among multiple brain regions by integrating graph regu-
larization learning and adaptive hypergraph learning. As
mentioned above, an adaptive manifold regularization
(AMR) method was proposed to construct new BFNs.
Firstly, a low-order BFN was constructed by calculating
the Pearson correlation coefficients between time series.
Then, a traditional hypergraph was constructed via k-
nearest neighbors (KNN) algorithm. Subsequently, the
traditional hypergraph structure was jointly updated
through hypergraph ranking optimization and adaptive
weight learning to obtain the adaptive hypergraph. The
Laplacian matrix of adaptive hypergraph was taken as
the manifold regularization term. Finally, the low-order
BFN was optimized through the adaptive hypergraph
manifold regularization and L1 sparse regularization.

The main contributions and advantages of this study
are as follows: (A) AMR integrated graph regularization
learning and adaptive hypergraph learning in BFNs,
exploring high-order information among multiple brain
regions, better emphasizing critical information, and
reducing noise and redundancy. (B) We identified the
discriminative brain regions in eMCI patients, analyzing
the changes and damage in these regions, and providing
a foundation for the prevention and treatment of eMCI.
(C) We investigated the changes in the topological prop-
erties and analyzed the factors leading to these changes
in eMCI, providing an important reference for a deeper
understanding of the disease. The subsequent sections
are structured in the following manner. Section 2 intro-
duces the overview of AMR and the selected experimen-
tal data. Section 3 presents the experimental results,
discriminative brain regions in eMCI, and topological
properties changes. Finally, we concluded by summariz-
ing its content, reflecting on the method's limitations,
and outlining future research directions.

2 | MATERIALS AND METHODS

2.1 | Framework

Figure 1 illustrates the visual overview of the proposed
method. It mainly consists of the following steps:
(A) Preprocessing raw resting-state fMRI data;
(B) Extracting time series from fMRI; (C) Constructing a
low-order BFN according to Pearson correlation coeffi-
cients; (D) Constructing traditional hypergraph through
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the low-order BFN; (E) Improving the original hyper-
graph weight through hypergraph ranking optimization;
(F) Refining hypergraph weight further to obtain the
final adaptive hypergraph through adaptive weight learn-
ing; (G) Generating the Laplacian matrix from adaptive
hypergraph and creating an adaptive hypergraph mani-
fold regularization term; (H) Optimizing the low-order
BFN to construct a BFN with AMR through the adaptive
hypergraph manifold regularization and L1 sparse regu-
larization; (I) Extracting features and selecting discrimi-
native features; (J) Partitioning discriminative features
into training and testing sets, followed by training adopt-
ing support vector machine (SVM); (K) Visualizing dis-
criminative brain regions based on the selected features
and analyzing discriminative regions in eMCI.

2.2 | Data and preprocessing

We employed a total of 214 subjects' resting-state fMRI data
from the publicly available Alzheimer's disease neuroimag-
ing initiative (ADNI) database (https://adni.loni.usc.edu/).
Fifty-one eMCI patients were taken as eMCI group,

including 28 males and 23 females, aged 74.09 ± 6.60 years
old. Seventy-two normal subjects were taken as the normal
group, including 35 males and 38 females, aged 77.88
± 6.47 years old. We obtained approval from the ADNI
Research Ethics Committee (https://adni.loni.usc.edu/
study-design/ongoing-investigations/) and ensured that all
participants provided written informed consent.

The subjects were scanned by the 3.0 T Philips
Achieva scanner with the following specific parameters:
imaging matrix = 64 � 64, slice thickness = 3.3 mm, flip
angle = 80�, repetition time (TR) = 3000 ms, and echo
time (TE) = 30 ms. The raw fMRI data were prepro-
cessed by means of statistical parameter mapping
(SPM12) and the data processing assistant for resting
states (DPARSF).21 The specific steps are as follows:
(A) Time point removal: The first 10 time points were dis-
carded due to higher image noise in these initial points.
(B) Image normalization: The fMRI images were con-
verted into the Montreal Neurological Institute (MNI)
standard brain space. It set the bounding box to [�90,
�126, �72; 90, 90, 108], voxel size to [3 3 3], ensuring
consistency between images and reducing noise interfer-
ence. (C) Spatial smoothing: Gaussian kernel smoothing

FIGURE 1 Flow of the proposed method.
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was applied to the normalized fMRI images to enhance
signal-to-noise ratio. (D) Bandpass filtering: A frequency
range of 0.01–0.08 Hz was set to remove low-frequency
drift and high-frequency noise. (E) Time series extraction:
Brain regions were delineated, and time series were
extracted for each region.22

2.3 | Hypergraph generation

We assume a time series X ¼ x1,x2, � � �,xB½ ��RD�B, where
X denotes the time series, D represents the length of the
time series, and B denotes the number of brain regions.
Then, we adopted the sliding window method23 to divide
the time series into different sub-time series. The time
series matrix of k-th window was defined as
X kð Þ ¼ xk1,x

k
2, � � �,xkB

� �
�RLa�B, where xkB denotes the time

series of the k-th window in the B-th brain region, La is
the length of sliding window. A low-order BFN is con-
structed by calculating the Pearson correlation coeffi-
cients. The correlation coefficient matrix of the k-th
window can be expressed as P kð Þ ≈X kð ÞTX kð Þ, which can
be converted into the optimized form:

min
P kð Þ

kP kð Þ �X kð ÞTX kð Þk2F ð1Þ

where k is the window number of the time series, P kð Þ is
the coefficient matrix of the kth low-order BFN, and X kð Þ

is the time series matrix of k-th window.
The conventional graph tends to depict only pairwise

relationships between nodes, while the relationships
among brain regions are more complex than pairwise
relationships. The hypergraph can better preserve infor-
mation about the relationships among multiple brain
regions.24–26 In the hypergraph, G V ,E,wð Þ denotes a
hypergraph, where V denotes the set of nodes, E is the
set of hyperedges connecting multiple brain regions, and
w is the set of weight of the hyperedges. H is the associa-
tion matrix, defined as:

H v,eð Þ¼ 1, v� e

0, v =2 e

�
ð2Þ

where v is a hypergraph node and e is a hyperedge. Node
degree and hyperedge degree are computed for each
node and hyperedge, and the formulas are shown below:

δ eð Þ¼ P
v � V

H v,eð Þ

δ vð Þ¼ P
e � E

w eð ÞH v,eð Þ

8><
>: ð3Þ

where w eð Þ denotes the weight of the hyperedge e, δ eð Þ is
the node degree, and δ vð Þ is the hyperedge degree.

2.4 | Adaptive hypergraph learning

High-order relationships are often depicted via the time
series X, often resulting in fixed weight. It makes tradi-
tional hypergraph struggle to adapt to data changes,
thereby failing to capture information precisely. The
hypergraph is made more flexible to adapt to high-order
relationships between data by adaptive hypergraph learn-
ing. The structure and weight of the hypergraph are
adapted to changes in the data, which improves the abil-
ity to model complex relationships and allows for more
accurate and adaptive relationships between brain
regions.

The Laplacian matrix of a traditional hypergraph L is
obtained, which is described as:

L¼ I�A ð4Þ

where A is the adjacency matrix of hypergraph, I is the
identity matrix.

It is necessary to assign a ranking vector f and a query
vector y such that Ω fð Þ¼ 1

2 f
TLf . Then, f is optimized to

find strong connection points by ℓ2-norm.27 The new
ranking vector f � is calculated accordingly:

f � ¼ arg min
f

Ω fð Þþθ k f �yk22 ð5Þ

where θ is the regularization parameter, f is the ranking
vector, y is the query vector. The hypergraph edge weight
and structure optimization are performed after optimiz-
ing the hypergraph ranking so that the hypergraph can
adaptively change rows according to the update of weight
and structure.

Let f and H be fixed, define Z¼ δ vð Þ�1
2H and ρ¼ZTf .

Subsequently, the weight w is optimized by adding an ℓ2

norm regularizer,28 which aims at optimizing and modu-
lating the structure of the hypergraph in an efficient,
robust, and automated way:

w� ¼ arg min
w

ρTdiag wð Þδ eð Þ�1ρþη kwk22
� � ð6Þ

where w� denotes the optimized weight, η is the adaptive
weight regularization term parameter, δ eð Þ is the node
degree, and theℓ2-norm regularizer adds smoothness.

The obtained f � and w� will continue to optimize the
structure of the hypergraph itself, after updating f and w.
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Finally, the adaptive hypergraph H� is obtained, which
has the objective function:

H� ¼ arg min
X

f �
T

I�δ vð Þ�1
2Hw�δ eð Þ�1HTδ vð Þ�1

2

� �
f �

ð7Þ

The adaptive hypergraph learning is optimized by the
alternating iterative algorithm to update f, w, and H.
They are optimized by solving:

f �,w�,H�ð Þ¼ arg min
f ,w,H

T f ,w,Hð Þ ð8Þ

a. Update f �. Let f and H be fixed, J ¼ I� A
1þθ.f

� is
obtained through Equation (9):

f � ¼ arg min
f

T f ;w,Hð Þ¼ωJ�1y ð9Þ

where ω¼ θ
1þθ.

b. Update w�. The optimal w� is obtained through the
least mean square method.29 It is sequentially revised
upward along the negative gradient of the optimiza-
tion function. w� is computed by

w� t½ � ¼w� t�1½ � �αLMS
∂φ w�ð Þ
∂w�

				
w� t�1½ �

ð10Þ

where αLMS represents the learning rate, φ w�ð Þ is the
optimization result of the Lagrange formula in
Equation (6), and w is updated until convergence to
obtain the optimal w�.

2.5 | Brain functional network with
adaptive manifold regularization

The Laplacian matrix of graph reflects its intrinsic geo-
metric structure.30 The high-order relationships among
nodes can be captured by the Laplacian matrix of the
adaptive hypergraph instead of the original graph's
Laplacian matrix. The Laplacian matrix of the adaptive
hypergraph is calculated accordingly:

LH� ¼ I�δ� vð Þ�1
2H�w�δ� eð Þ�1HTδ� vð Þ�1

2 ð11Þ

where δ� vð Þ and δ� eð Þ are the hyperedge and node degree
of the adaptive hypergraph, respectively. Inspired by Ji
et al.,19 we introduce LH�

in the form of manifold regu-
larization, along with L1 sparse regularization, into
Equation (1) to obtain a BFN with AMR. The objective
function is shown below:

min
P kð Þ

kP kð Þ �X kð ÞTX kð Þk 2
F þ λtr P kð ÞTLH�

P kð Þ
� �

þ γ kP kð Þk 1

ð12Þ

where X kð Þ represents the sub-time series, P kð Þ is the coef-
ficient matrix of BFNs, LH�

denotes the Laplacian matrix
of the adaptive hypergraph. λ and γ represent the hyper-
graph manifold regularization term parameter and the L1

sparse regularization term parameter, respectively.
Equation (12) is non-differentiable, so we adopt gradi-

ent descent and the nearest-neighbor operator31 method
to solve the objective function. The gradient of the fitting
term is calculated in the objective function, and then P kð Þ

is updated by the gradient descent method. The optimiza-
tion formula is as follows:

P kð Þn ¼P kð Þn�1 �αn rP kð Þ f X kð Þ,P kð Þn�1
� �

þ λLH�
P kð Þ

h i

ð13Þ

where αn represents the step size of the gradient descent,
and n represents the number of updates. Calculate the
nearest-neighbor operator, apply a threshold to
Equation (13), and further update P kð Þ until convergence
to obtain the optimal P kð Þ. Table 1 shows the specific
updating process.

3 | EXPERIMENT AND ANALYSIS

We extracted weighted clustering coefficients from BFNs
as features and performed feature selection through t-test
inspired by Jiao et al.32 Subsequently, the classification
purpose was accomplished through SVM. The weighted
clustering coefficient features comprehensively reflected
the interaction patterns between brain regions. The clas-
sification outcomes were ultimately achieved,32 based on
the distinct node clustering patterns between eMCI
patients and normal subjects. SVM demonstrated excel-
lent generalization capabilities, making them well-suited
for medical data with small sample sizes.33

The classification performance was assessed by the
tenfold cross-validation.34 The participant's data were
randomly divided into 10 equally sized subsets in tenfold
cross-validation, each with a similar data distribution, for
10 independent experiments. One subset served as the
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test set in each experiment, while the other nine subsets
were combined to form the training set. Performance
metrics were averaged over the rounds to obtain the final
classification performance of the method. Accuracy
(ACC), area under the curve (AUC), specificity (SPE),
and sensitivity (SEN) were selected as evaluation metrics
for classification performance.35

3.1 | Parameter selection

This section involves the selection of parameters related
to AMR. The parameters included the number of neigh-
bors c for building the hypergraph and the regularization
term parameter η for constructing the adaptive hyper-
graph in AMR. Additionally, it included two regulariza-
tion term parameters λ and γ in the method model.
Parameter selection were conducted using tenfold cross-
validation for comparing the classification performance.

The parameters λ and γ were fixed, and the optimal
values for constructing the adaptive hypergraphs c and η
were determined. The range of values for c and η
were1,3,5,7,9,11 and [0.0005, 0.0001, 0.005, 0.001, 0.05,0.01],
respectively. Figure 2 (A) illustrates the classification
results for different combinations of neighbors and
weight parameters.

According to Figure 2A, it can be observed that ACC
reached its optimum when c = 7 and η = 0.001. c had a

TABLE 1 Optimization process of brain functional network.

Input: The time series X; The number of neighbors c; The
hypergraph manifold regularization term parameter λ; The L1
sparse regularization term parameter γ; The adaptive weight
regularization term parameter η.

Output: The coefficient matrix of BFNs P kð Þ.

The KNN algorithm constructs the traditional hypergraph;
Adopt Equation (2) to obtain the association matrix H;
Calculate the node degreeδ eð Þ and hyperedge degreeδ vð Þ of the
traditional hypergraph by Equation (3);

Calculate the adjacency matrix A;
Initialize the weight matrix of the hypergraph w;
Define the rank vector f.

While not converges
Fix other variables;
Update f by Equation (9);
Then Fix other variables;
Define J ¼ I� A

1þθ;
Update w by Equation (10);
Then Fix other variables;
Update H by Equation (7) and Equation (8);
End while
Get adaptive hypergraph H�;
Construct adaptive hypergraph manifold regularization term
by Equation (10);

Get P kð Þ by Equation (12);
While not converges
Update P kð Þ by equation (13).

End while

F IGURE 2 Classification accuracy for different parameter combinations.
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more significant impact on classification accuracy than η
under different parameter combinations. c (η) showed an
increasing-then-decreasing trend in classification accu-
racy as its value increased when η was held constant. It
may be because selecting c vertices with the closest
Euclidean distance generates more hyperedges with
increased node relationships, better reflecting the struc-
tural characteristics of BFNs. The nodes in the hyper-
edges may contain different categories when there are
too many vertices, describing the overall structure of
BFNs rather than local features. It may not capture com-
plex relationships among brain regions.

Fixed c = 7 and η = 0.001. Varied the values of λ and
γ to find the optimal values for the regularization param-
eters, ultimately obtaining the best classification accuracy
for the method. The range of values for λ and γ was
[2-4,2-3, 2-2, 2-1]. Figure 2B shows the classification accu-
racy results for different regularization parameters.

It can be observed that there was not much fluctua-
tion in classification accuracy under different regulariza-
tion parameter combinations from the figure, indicating
a certain level of stability in AMR. The classification
accuracy increased with the increase of λ while a fixed
value of γ. The classification accuracy showed an increas-
ing trend followed by a decrease when fixing λ. The rea-
son for this trend may be that a larger λ indicated a
greater weight for the adaptive hypergraph manifold reg-
ularization term. It made the model more focused on the
high-order relationships among multiple brain regions,
that is, a preference for preserving information about
high-order relationships among multiple brain regions. It
may eliminate some useful information when the weight
of γ was too large, leading to a decrease in classification
accuracy. In summary, c was set to 7, η was set to 0.001,
and the two regularization parameters λ and γ were set to
2 and 3, respectively.

3.2 | Ablation study

We conducted ablation study to discuss the impact of
AMR on the classification performance. AMR contained
two modules: adaptive hypergraph learning and hyper-
graph learning. We added modules in sequence to obtain
the classification performance of methods under different
modules. The classification results are presented in
Table 2, with the optimal classification results
highlighted in bold.

A clear improvement in classification performance
was found when introducing both adaptive hypergraph
learning and hypergraph learning method compared to
methods without these components. The introduction of
hypergraph learning allowed the method to better

capture high-order information among multiple brain
regions, positively contributing to enhanced classification
performance. The adaptive hypergraph exhibited greater
flexibility compared to traditional hypergraph. The rea-
son may be that their weights can automatically adjust
based on data characteristics, adapting more effectively
to complex relationship structures. Additionally, the
adaptive hypergraph can emphasize the critical informa-
tion in the network more by learning the weights and
structures, reducing noise and redundancy, and avoiding
information loss.

The standard deviation of the experimental results
also reflect the size of the performance fluctuation at
each fold. A smaller standard deviation signified stronger
stability of the method. The introduction of hypergraph
learning enhanced the stability of the method, and simul-
taneously introducing both hypergraph learning and
adaptive learning maintained high stability. Conse-
quently, AMR demonstrated high stability and exhibited
superior classification performance.

3.3 | Contrast experiment

We evaluated the effectiveness of AMR by comparing it
with five state-of-the-art methods for constructing BFNs.
The baseline methods include Pearson correlation (PC),14

sparse representation (SR),15 graph regularization
(MR),18 sparse and hypergraph manifold
regularization (SHMR),19 and dynamic hypergraph mani-
fold regularization (DHMR).20 All methods adopted the
same feature extraction and selection methods, used
SVM for classification, and compared the final optimal
results. The detailed classification performance is pre-
sented in Table 3, with the optimal results highlighted
in bold.

It is evident that AMR exhibited the best classification
performance, with ACC, AUC, SPE, and SEN reaching
82.87 ± 1.88%, 86.57 ± 1.06%, 84.82 ± 2.04%, and 83.35
± 2.90%, respectively. MR demonstrated better classifica-
tion performance compared to the first two methods. It
indicated that focusing on the topological organizational

TABLE 2 Classification performance of ablation study.

Hypergraph
learning

Adaptive hypergraph
learning ACC (%)

� � 74.84
± 2.76

� � 79.03
± 1.88

� � 82.87
± 1.88
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features of BFNs by identifying similar connectivity pat-
terns between brain regions is more effective in distin-
guishing between eMCI patients and normal subjects.
SHMR performed better than MR, indicating that the
introduction of hypergraph instead of original graph
focuses on the topological organization features of multi-
ple brain regions. It helped to provide richer prior infor-
mation. Meanwhile, the introduction of the sparse
regularization term parameter can eliminate the noise
and redundant values. DHMR introduced dynamic
hypergraph learning based on SHMR, so that the hyper-
graph structure was modified according to the dynamic
BFNs. It reduced the loss of the time dimension informa-
tion, and achieved a classification accuracy of
80.31 ± 2.95%.

Nevertheless, AMR outperformed DHMR in terms of
classification performance. It suggested that solely modi-
fying the hypergraph structure to adapt to dynamic BFNs
may not effectively capture high-order relational infor-
mation among multiple brain regions. The adaptive
hypergraph allowed the hypergraph to adapt even further
to changes in the data based on the update of the ranking
weights, with stronger generalization capabilities. AMR
identified more superior relationships among brain
regions and improved the distinction of relationships
through hypergraph ranking optimization and adaptive
weight learning. It retained the more important high-
order information of brain regions in BFNs. In addition,
the contrast experiments employed tenfold cross-
validation, and scrutiny of the standard deviations in
Table 3 assessed the fluctuation in performance across
each fold. AMR performed the best in terms of standard
deviation of classification performance, indicating that
AMR had stronger stability.

3.4 | The most discriminative brain
regions

We sought the most discriminative brain regions in eMCI
classification after determining the optimal parameter
combination through tenfold cross-validation. The

discriminative brain regions were selected by features
with p-value less than 0.05 and top 15 frequency of occur-
rence. The selected top 15 discriminative brain regions
were visualized via the BrainNet Viewer toolbox, provid-
ing a clearer representation of their spatial locations and
relationships. Figure 3 shows the visualization of discrim-
inative brain regions, where L and R for left and right
brain, respectively.

It is found from Figure 3 that the selected discrimina-
tive brain regions are mainly located in the frontal lobe
and temporal lobe. On the one hand, the frontal
lobe plays a crucial role in the brain, being associated
with important functions such as memory, judgment,
and abstract thinking.36 The selected frontal lobe regions
include the left orbital middle frontal gyrus (ORBmid.L)
and the left medial superior frontal gyrus (SFGmed.L),
each having functions related to decision-making and
self-awareness.36 On the other hand, the temporal lobe is
primarily responsible for functions like memory, lan-
guage ability, and emotional control, closely associated
with various cognitive and perceptual functions.37 The
discriminative brain regions, such as the left olfactory
cortex (OLF.L), right hippocampus (HIP.R), right supe-
rior temporal gyrus (HES.R), and left superior temporal
gyrus (STG.L), play crucial roles in olfactory processing,
memory, auditory processing, and language comprehen-
sion, respectively.38 Literature39 suggests that damage to
HIP.R directly leads to a decline in short-term memory,
which may also be affected in eMCI patients. Addition-
ally, the selected right postcentral gyrus (PoCG.R), right
peri-calcarine cortex (CAL.R), left thalamus (THA.L),
and right thalamus (THA.R) are associated with sensory
reception and higher cognitive functions.40

In particular, the selected discriminative brain regions
include THA.L and THA.R. They serve as secondary
brain structures, primarily functioning as a relay station
for information transmission and integration.41 The
results mentioned above are generally consistent with
previous pathological studies and reports on neuroimag-
ing biomarkers.42 Most of the selected discriminative
brain regions are core members of the default mode net-
work (DMN).43 It includes the left posterior cingulate

TABLE 3 Classification

performance of different methods.
Method ACC (%) AUC (%) SPE (%) SEN (%)

PC 67.85 ± 3.08 70.79 ± 3.31 78.38 ± 3.70 57.32 ± 5.80

SR 64.47 ± 3.89 68.66 ± 2.40 72.44 ± 3.04 61.22 ± 4.28

MR 74.84 ± 2.76 78.73 ± 1.69 76.03 ± 1.99 71.9 ± 3.24

SHMR 79.03 ± 1.88 82.61 ± 1.23 79.53 ± 1.76 77.89 ± 3.28

DHMR 80.31 ± 2.95 84.47 ± 1.78 81.91 ± 2.52 79.58 ± 3.48

AMR 82.87 ± 1.88 86.57 ± 1.06 84.82 ± 2.04 83.35 ± 2.90
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gyrus (PCG.L), ORBmid.L, SFGmed.L, CAL.R, and HIP.
R. These findings validate the results of this study from
an overall brain functional perspective and provide addi-
tional discriminative brain regions for the diagnosis of
eMCI, holding significance for clinical applications.

3.5 | Topological properties analysis

Inspired by Zhang et al.,44 we analyzed the graph
theoretical topological properties of the BFN in eMCI
patients and normal subjects. The Gretna toolbox was
utilized to obtain the AUC for clustering coefficient (Cp),
global efficiency (Eg), and local efficiency (Loc) within
a threshold range. These three topological properties

comprehensively described potential changes in terms of
network aggregation, global information transfer effi-
ciency, and local information transfer efficiency in eMCI
patients. They possessed biologically intuitive explana-
tions, aiding researchers in understanding the fundamen-
tal organizational principles of the BFN. We analyzed the
differences of the above indicators by using two sample
t-test. According to statistical research, topological prop-
erties with a p-value less than 0.05 are considered statisti-
cally significant, indicating a noticeable distinction.
Figure 4 and Table 4 show the differences of topological
properties.

In Figure 4, "****" represents statistically significant
differences, while "ns" indicates no significant difference.
Upon observing Figure 4 and Table 4, it is evident that

FIGURE 3 Discriminative brain regions.

FIGURE 4 Difference of topological properties.
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eMCI patients exhibited a significant decrease in Cp com-
pared to normal subjects. This decrease highlighted a
reduction or weakening of connections between brain
regions, leading to a decrease in local clustering.
Although there was no significant difference between
global efficiency and local efficiency, the values in eMCI
patients showed a downward trend. This may be attrib-
uted to the decreased efficiency of information transmis-
sion due to a decline in cognitive function, although the
decline was not highly significant in the early stages.

4 | DISCUSSION

Alzheimer's disease causes changes in the central ner-
vous system of the brain and has extremely high morbid-
ity and mortality.2 eMCI has been focused on as a
transitional stage between AD and normal aging.45,46

Unfortunately, the pathological mechanisms of eMCI are
still unclear, and its classification and identification
are still a challenge. Despite eMCI being classified and
identified via BFNs, the classification performance is
affected due to the varying quality of brain region infor-
mation in BFNs. This led to different degrees of limita-
tions in existing methods for constructing BFNs when
applied to disease classification. PC proposed by Biswal
et al.14 considered the correlation between brain regions
but resulted in overly dense BFNs information. This
made it challenging to discern which connections are
disease-related, leading to erroneous connection informa-
tion. SR proposed by Lee et al.15 emphasized the sparsity
of BFNs but overlooked many of its topological struc-
tures. MR proposed by Li et al.18 considered topological
structure information between two brain regions but did
not address the complex topological structures among
multiple brain regions. SHMR and DHMR did not ade-
quately consider the differences among brain regions
within different hyperedges and between hyperedges,
thus limiting their classification performance.

The aforementioned methods failed to construct a
manifold regularization term that better captures the
high-order information of multiple brain regions in
the expression of BFNs. Moreover, they neglected crucial
topological structural information regarding the varying
importance among brain regions. These methods solely
considered low-order information between pairs of brain

regions. They simplistically treated the relationships
among multiple brain regions as indiscriminate high-
order prior information, thus falling short in identifying
discriminative brain regions reflecting eMCI changes.
AMR flexibly integrated a graph regularizer representing
the topological structure with adaptive hypergraph learn-
ing. It comprehensively captured the brain's topological
structural information and preserved important high-
order prior information among multiple brain regions.
Specifically, DHMR classification performance was lower
than that of AMR. It could be attributed to dynamic
hypergraph overlooking the inherent improvement of
hypergraph structure and weight, as well as fine-tuning
multiple brain regions relationship information in indi-
vidual sub-time series. AMR enhanced the original
weight matrix by reordering the node and hyperedge
information of each hypergraph through the hypergraph
ranking optimization algorithm. The introduction of
adaptive weight learning iteratively updated the ordering
and weights, ultimately yielding a more information-rich
adaptive hypergraph structure. The adaptive hypergraph
learning placed greater emphasis on optimizing and
adjusting the hypergraph structure when dealing with
dynamic data, providing higher flexibility and accuracy
in adapting to data variations. This made the adaptive
hypergraph more suitable for preserving high-order rela-
tionships among multiple brain regions, thereby enhanc-
ing the method's classification performance compared to
dynamic hypergraph.

Notably, the selected discriminative brain regions
included THA.L and THA.R, while other eMCI classifica-
tion methods paid less attention to them. Both THA.L and
THA.R were involved in the formation of neural circuits
related to memory and learning, and are closely connected
with other brain regions such as HIP.R and HIP.L. The
study suggested that MCI was associated with changes in
cognitive function and a reduction in thalamic volume.41

Furthermore, we found the clustering coefficient was
decreased in eMCI patients, reflecting reduced modular
information processing in patients' BFNs. It suggested that
reduced modularity in BFNs might be a crucial feature of
cognitive impairment in eMCI. In summary, AMR held
potential application value in clinical diagnosis.

The proposed method has many shortcomings and
limitations. Firstly, heterogeneity issues are introduced
due to multisite data. We will consider incorporating

TABLE 4 Comparison of

topological properties.
Topological property eMCI patients Normal subjects p

Cp 0.243 ± 0.010 0.252 ± 0.021 0.001

Eg 0.252 ± 0.004 0.254 ± 0.005 0.285

Loc 0.337 ± 0.009 0.338 ± 0.011 0.383
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methods like federated learning47 to address data hetero-
geneity in the upcoming work. Secondly, the dataset is
too small, which affects the effectiveness of the proposed
method. More data will be collected in the future to solve
this problem. Furthermore, there may be efficiency and
performance concerns due to frequent attention to irrele-
vant information in the construction of adaptive hyper-
graph. We consider introducing the attention
mechanism48 to increase the model's flexibility and focus
on key information.

5 | CONCLUSIONS

We proposed an AMR method to construct a BFN and
classify eMCI. It utilized a low-order BFN to construct
hypergraph. The hypergraph ranking optimization and
adaptive weight learning were introduced to enhance the
original hypergraph structure, resulting in the adaptive
hypergraph better suited to the data. High-order informa-
tion was introduced into the low-order BFN adopting the
Laplacian matrix as the manifold regularization term.
This incorporation enriched the constructed BFN with
more high-order information. The results indicated that
AMR demonstrated excellent classification performance
and stability on real datasets. In addition, the clustering
coefficient of patients decreased, and reduced BFNs mod-
ularity may be a key feature of eMCI.
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